Informasi Lebih Lanjut | | atau melalui |

3.1.1 Persamaan Nilai Mutlak

PERTEMUAN PERTAMA

3.1.1Persamaan Nilai Mutlak

A. Pengertian Persamaan Nilai Mutlak

Persamaan nilai mutlak adalah nilai mutlak dari angka yang dapat didefinisikan sebagai jarak angka di atas titik 0 pada garis angka tanpa perlu memperhatikan bagaimana arahnya.

Nilai mutlak dari angka x juga dapat diartikan sebagai jarak angka di atas titik 0 pada garis angka terlepas dari bagaimana itu terjadi. Ini berarti bahwa | x | = 5 memiliki dua solusi.


Itu karena ada dua angka yang jaraknya di atas 0 adalah 5: x = -5 dan x = 5. Perhatikan gambar garis dibawah ini:

Konsep ini dapat diperluas untuk situasi yang melibatkan bentuk-bentuk aljabar yang berada di dalam simbol nilai mutlak.

B. Sifat Persamaan Nilai Mutlak

Jika X merupakan suatu bentuk aljabar dan k adalah bilangan real positif, maka |X| = k akan mengimplikasikan X = –k atau X = k.

Contoh 1: Menyelesaikan Persamaan Nilai Mutlak

Selesaikan persamaan: –5|x – 7| + 2 = –13.

Pembahasan Pertama, kita isolasi nilai mutlak, yaitu membuat simbol nilai mutlak berada pada satu ruas sedangkan suku-suku lainnya kita letakkan di ruas yang lain.

Sekarang perhatikan bahwa x – 7 merupakan “X” pada sifat persamaan nilai mutlak, sehingga

Dengan mensubstitusi ke persamaan semula akan memastikan bahwa himpunan selesaiannya adalah {4, 10}.

LIHAT SEMUA Menambahkan catatan
ANDA
Tambahkan Komentar Anda

Tentang

Website Belajar Mandiri merupakan platform gratis yang bisa digunakan sebagai penghubung bagi Murid dan Guru untuk menunjang Pembelajaran Online.



Jalan Panglima Nyak Makam, No.19, Kecamatan Kuta Alam, Gampong Kota Baru, Kota Banda Aceh
(0651) 7555689
sman4ba@gmail.com